Int. J. Heat Mass Transfer. Vol. 6, pp. 355-362. Pergamon Press 1963, Printed in Great Britain.

DIFFERENTIAL METHODS FOR STUDYING RADIANT
HEAT TRANSFER

V. N. ADRIANOYV and G. L. POLYAK
The Krzhizhanovsky Power Institute, Moscow, U.S.S.R.

(Received 27 July 1962)

Annoranna—B pabore paccMoTpensl AnddepeHInaNTbHEE METONE MCCAETOBAHUA JIYYUCTOrO

rennoobMeHa, KOTOphle OJarofapA cBOelf CPABHUTEJIbHON HPOCTOTE OTKPHIBAIOT HOBHIE

B03MOKHOCTH. [Ipenmorken Gonee TOYHHI guddepeHnMaIbHEI METO, OCHOBHBAWIIMICH Ha

TeH30PHOM NPefCTABICHUN JYYMCTOro moToKa. CpaBHeHUE pPe3yNLTAaTOB pacyéra Jy4YHCTOro

Ten1000MeHa B IIIOCKOM CJI0€ TOTIoUIAIIIell Cpessl, IOMyYeHHEX HA OCHOBE CYIIECTBYOINX

M npejlaraeMoro MeToj0B, ¢ YMCIeHHLIM pelleHneM 3aJauyl Ha BHYHCIHTENLHON MamnHe
MOKa3al0 04YeHb XOPOIee COBNAJEHUE [ITIA PEKOMEHIYeMOr0o MeToa.
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NOMENCLATURE

absorption coefficient of the medium;
length of path of radiation;
black-body emissivity;

radiation intensity;

black-body radiation intensity;

densities of hemispherical incident fluxes at a plane normal
to the x-axis;

absolute value of the cosine of the angle between the
direction of the beam (s) and the normal (n) surface
section;

element of the solid angle in the direction s;

coefficients allowing for distribution of J in hemispherical
radiative fluxes £, and E_;

absolute temperature of the medium in the same section of
the layer;

temperatures and black-body emissivities of boundary
surfaces, respectively;

emissivity and absorptivity of the boundary surfaces,
respectively;

thickness of the plane layer;

radiative flux vector;

velocity of propagation of radiation in the medium;

volume density of radiation energy;

symmetrical orthogonal emissive power tensor of the
second range (P/c is tensor of radiation intensities);
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pit = fu,J cos (xi, 8) cos (x, ) dw,
iL,k=123)

PN
pii = fu,J €os® (xi, 5) dw,
(i=123
Xi = kxi,
tensor;
T, time;
Eerr and Eine,
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P dimensionless tensor equal to the ratio of tensor P to its

components of tensor P;

normal components of tensor P;

dimensionless co-ordinate along the main axis of the

hemispherical densities of effective and incident radiant

fluxes, respectively;

Jam Jett ¥ do . . o
Heft = [ Jor 7 dar | coefficients allowing for the angular intensity distribution
S @m e . > J in the effective and incident fluxes on the boundary
e — S Jine 7 do> surface;
lam Jine n dow )
7 = cos 8; 9, angle between the beam direction and the normal to the
boundary surface;
¢, and g, net radiative fluxes on the boundary surfaces;
G reduced strength of volume heat sources;

Ry=1— Ayand Ry = 1 — A,,
Ky(k8); Ky(k3d); Ky(kd),

reflection factors of the boundary surfaces;
the second, third and fourth exponential integrals of k3

obtained from formula

RADIANT heat transfer processes under steady
conditions are described mathematically
rigorously by Fredholm integral equations of
the second kind. Their analytical solution is
difficult especially for systems with volume
absorption.

The quest for effective methods of radiant
heat transfer prediction has led to the treatment
based on the differential equation of radiant
transfer. This equation, with no scattering in
the medium, is of the form:

1dl

%B‘I—N”—J+Jo'

ey
Integrating the transfer equation in all possible
directions over 4= radians, the radiant energy
balance equation at the point of interest may be
obtained,

o .
é;+dlvq:4kEo“‘kCUzqv~ (2)

o e%{}x

Ku{x) = j dw.

il

Stationary problems of radiant transfer only
are considered in this paper, problems where
the term éU/07 in equation (2) is zero. This
equation is, therefore, simplified to:

div q = 4kE, — kcU = g,. (2a)

Combination of equations (1) and (2a) yields
an integro-differential equation based on the
intensity of radiation J. This equation may be
solved mathematically using certain assumptions.

Pioneers of the differential methods for radiant
heat transfer prediction were, probably, Schuster
[1] and Schwarzschild {2]. In 1905-1906 they
developed a method which allowed them to study
radiative transfer in plane layers of the atmo-
sphere. Their method was used, with some modi-
fications, for geophysical problems by Kuznetsov
[3]. Bruhat [4], Nevsky [5], Ribaud [6] and
others applied this technique to thermal
problems.

The Schuster-Schwarzschild method is based



DIFFERENTIAL METHODS FOR STUDYING RADIANT HEAT TRANSFER

on the conception of the net radiative flux in a
plane layer of the medium as the difference
between two counter fluxes. This conception
allows the integro-differential equation of
radiant heat transfer to be approximated by a
system of two averaged differential equations for
radiative fluxes £; and E_. With no scattering
in the medium these equations have the form:

dE. 1

"d}* = 2kEo — kfﬂ-f- E+ |

dE- 2kE, + km_E |

e =~ Kot kmoE- |

The coefficients my and m_ are, generally
speaking, functions of the co-ordinate x and
other factors. Their behaviour is difficult to
predict for every specific case. However, it can be
shown by the analysis, m. and m_ are slightly
dependent on the co-ordinate and they may be
substituted in equation (3) for their average
value m+ = m—- = m. After this substitution
joint solution of equations (3) and energy
equation (2a) (also in terms of /) is not difficult
in principle. If the fluxes E- and E_ are assumed
to be perfectly diffusive in every cross section of
the layer (which, in general, is close to reality),
it is easy to see that my = m_ = m = 2. For
this case solution of intial equations (2a) and
(3) yields the following expression for the net
radiative flux in a plane layer of the medium
bounded by grey walls:

DR % e 2 N

= A+ 1Ay — | + k&

The Schuster-Schwarzschild method may be

valid in principle for the radiant systems of

spatial geometry. However, in this case the

equations will be more complicated and estima-
tion of m becomes rather difficult.

In 1931 Rosseland [7] presented another dif-
ferential method for the study of radiation in
stellar atmospheres using integral transfer
equation (1). In this study Rosseland arrived at a
tensor representation of the radiative flux vector:

()

4

1
q=— EdivP. &)

Rosseland resolved the radiation tensor P
into two parts (the first part is related to the
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density of radiation energy at a given point, the
second gives the intensity distribution over
all the directions) and analysed them. His
result was that for stellar atmospheres of high
optical density the second part of the tensor
may be neglected as compared with the first one.
This allowed him to obtain the gradient ex-
pression for the radiative flux vector:

(4
9= -5 grad U. (6)*

Gradient representations of the radiation
vector have been utilized for thermal experi-
ments by Polyak [8] and Shorin [9], who applied
this technique to some problems of radiative
transport under various conditions, for systems
of different geometry.

In 1957 Polyak [10] analysed in detail tensor
expression (5) and obtained the following
expression for the radiant flux vector by intro-
ducing a dimensionless normalized tensor:

q=— ‘if grad U — C,ff div A. %)

Gradient formula (6) may be evidently ob-
tained from equation (7), if the dimensionless
tensor A, characterizing the shape of a tensor
ellipsoid of the radiation field, is always constant
and remains similar to itself. This condition is
fulfilled more precisely when the optical density
of the medium increases and when the system
approaches thermodynamic equilibrium as close
as possible. Thus both differential methods (the
Schuster-Schwarzschild method and the dif-
fusive one) wuse approximate differential
equations. In view of this, the accuracy of the
results obtained by these methods are often open
to question. Hottel [11, 12], for instance, criti-
cized the radiative diffusion method. In his
work Hottel compared the results of solution of
the radiant heat transfer problem in a plane
layer of an absorbing medium based on the
integral equationt with the solution to the same

.problem carried out with the radiative diffusion

* Formula (6) is often interpreted in literature as the
diffusion approximation of radiant transfer of the
similarity with the diffusion equation.

+ The integral equation was solved numerically with a
computer.
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process method. The comparison revealed
considerable disagreement between the results.
The difference between them is due to the fact
that Hottel used for comparison the results
obtained by the Konakov approximate method
[13]. If the boundary conditions of the problem
are formulated more precisely, the difference
between the results will be not so striking but
may be rather small, as will be demonstrated
below.

Besides the two above differential methods
tensor expression (5) may be adequately used for
some cases of radiative transport in an absorbing
medium. For steady conditions relation (5) is
rigorous and there is no doubt as to the validity
of its use. All the errors encountered are caused
only (in contrast to the above methods) by
inaccuracy in formulating the boundary con-
ditions.

The solution of a one-dimensional problem of
radiant heat transfer is given below on the basis
of tensor expression (5), and the results for a
plane layer obtained by various differential
methods are compared with the numerical
solution of Hottel.

From (5) the components of the radiation
vector ¢z, along the main axes x;, x,, x; of the
tensor P are found from normal components
of the tensor py;:

1 opu opii .
S i

Equation (8) is both a refinement of and
generalization of the Schuster-Schwarzschild
approximation (3):

L L dEE) L del)
= gm A ke odx P
and of gradient approximation (6)

1 écl)

Based on equation (8) energy equation (2a) may

be written as:
di 04, _ - '1 8pzz
vq = 8»(1 - axZ k ox;
= k(4Eo —cU)=q. 9)
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With no heat sources in the medium or with
local radiant equilibrium (g, = 0) equation (9)
is simplified to:

3
(L) g
o3 (k ex) =0

i=1

(10)

For a problem of radiant heat transfer in a
plane layer the main axis of tensor x; = x
merges with the direction of the radiative flux
vector and is normal to the boundary surfaces.
Equation (10) for this case acquires a simple
form:

1 d?p

divgq= — -5°,=0

K dx* ()

where
P = Pzz = j(4ﬂ)J0052 (x, \S) dw.

Boundary conditions may be formulated
based on the following considerations.

The net radiative flux ¢, normal to the boun-
dary surface may be expressed by two equations:

Gqn = AEinc — €Ey = Eyne — Eers. (12)

For the one-dimensional problem considered
the main tensor axis is normal to the boundary
surface. Hence, the value of the normal tensor
at the boundary pr = p, may be expressed by

pn = -‘l( = 2m an d(l) + J‘(“2ﬂ)J772 dw

(13)

= sett Eest + #inc Eine.

The following expression of the boundary
conditions is based on equations (12) and (13):

1 —R i
Gn = o . Hett + %Vnci E,.

14
Rotery 4 #ine Pn R%eff -+ Xine (4

Solution of energy equation (11) with boun-
dary conditions (14) yields the following formula
for the net radiative flux when the temperature
of the boundary surfaces is known:

(e1/A) Egy (set11 + #ine1)
- (fz/Az) E,. 2(%en 3 = Xine ¢ ))
" k& + (1/Ay) (%ett1 Ry + #ine1) )
+ (1/4,) (”eft‘ 2 Ry + Hine 2)
(15)

qr = — s =



DIFFERENTIAL METHODS FOR STUDYING RADIANT HEAT TRANSFER

To use formula (15) one should know the
values of coefficients »err and xj,e on both sur-
faces. Being obtained from rigorous relation (5),
equation (15) is precise, and the results depend
only on the accuracy of the coefficients xer and
#ine given at the boundary. If fluxes Eerr and
Einc on the boundary surfaces are assumed to be
perfectly diffusive (J = const.), these coefficients
are

,r(zn)-]"’i dw

Aetf = Hine — faw) J"? dw
27 {72 cos?Osinfdl 2
" 27 [17cosfsinfdf 3
In this case formula (15) for a plane layer
(at ¢ = A, and ¢, = A,, i.e. with grey walls)
becomes a convenient solution of this problem
based on gradient formula (6):

— Eyy — Eg,
9= (/a) + (/A — 1 + G/ ks

One can see that equation (17) differs from
formula (4) obtained by means of the Schuster—
Schwarzschild method only by the multiplier 3/4
with k8 in the dominator. If the boundary sur-
faces are assumed to be diffusively reflecting,
then serr1 = #etr2 = (2/3) and only the coeffi-
cients #inc1 and e 2 in equation (15) are to be
determined. For the analysis of their values
the extreme case of non-equilibrium radiant heat
transfer in a plane layer

T,=0,¢==A,= A, = 1)
is considered below. In this case the coefficient
#inc1 and xinc o should differ by the maximum
value and depend most strongly on the optical
depth of the layer 4 = ké.

Formula (15) for this condition

(T;=0,4,=4,=1)
reduced to a dimensionless form is simplified to:
(2/3) + #ine1

4 + xine1 + Hinee
(18)

To determine xinc 1 and xine 2 the temperature
field in the layer should be known. Uniform
temperature distribution over the thickness of
the layer was adopted as the first approximation,
the temperature being determined from con-

(16)

(7

9 q

Eqgq " Eou

=0
E02 Ax =A:=1
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sideration of the problem as a system composed
of three zones (two walls and a layer of the
medium).

In this case the temperature of the layer is

4 4 T4
T4+ T4 T (19)

4 1 "2 __
T = =
and the expressions for xinc1 and xinc» are the

5 5 since (7, = 0)
following:

21— 3K(4).
My T T T AT q
" o 314 2K,(d)
2 1+ 3K,(4)

% = ¥ (20)
"l 31— 2Ky(d)

The temperature field was found as the
second approximation based on gradient for-
mula (6) with corresponding boundary condi-
tions on the walls. In this case the distribution of
the fourth power of 7, over the layer thickness
is linear. Expressions for xine 1 and »inc 2 become
more complicated:

2

-0 3

(3/2) 4 — (1/8) + {(9/8) [—4K(4)] — 3Ky(4)}

(3/2) 4 + [BK,(4) + 2Ky(4)]

Xinc1

@y

2

Xine 2 im0 — 3
(17/8) — 19/8) [~4K(D] = 3Ky(d);

2 — [3Ky(4) + 2K,(4)]
Thus we can analyse the three solutions of the
radiant heat-transfer problem in a plane layer
of an absorbing medium which are carried out
by various differential methods. Formula (4)
corresponds to the solution by the Schuster—
Schwarzschild method when assuming that
my = m—- = m = 2 and formula (17) cor-
responds to the solution by means of gradient
expression (6) for radiation vector. Equation (18)
is a solution for the particular case (T, = 0;
A, = A, = 1) using tensor relation (5); the
values of #inc1 and xince can be obtained by
formulae (20), (21) and (22) for the first and the
second approximation.
In Table 1 the results are compiled of
dimensionless fluxes between the boundary
surfaces of the layer [graa/(Eyq — Eg-2)] and
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between the boundary surface and the layer
[g¢=s)/(Eqq — Eo.5), obtained by formulae (4),
(17) and (18). Here expressions for snc: and
#inc 2 wWere taken for the first and the second
approximation. However, one can see from
Table 1 that the results of both the approxima-
tions are in good agreement. In Table 1 for com-
parison, the values of the same fluxes are shown,
as obtained by the Hottel numerical solution
using Fig. 2 of his work [12]. Figs. 1 and 2 are

n
06 \&&’
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@0s/ 50~ Eoa

0-4 < 3

02 =

A=Kk

FiG. 1. Effect of the optical depth 4 = k& on dimen-

sionless flux ¢raa/(E,y — E,..) through the plane

medium between the walls at 4, = 4, = 1

Curve 1—the rigorous Hottel solution.

Curve 2—the Schuster-Schwarzschild method, (4).

Curve 3—the method which uses gradient representa-
tion of the radiation vector, (17).

4-O—points obtained by the present method,

formula (18); xinc, and xine, are found
by formulae (21) and (22) of the second
approximation. They merge with curve 1
on the plot.

plotted on the basis of the data of Table 1. Here
solutions obtained by all the three differential
methods are compared with the numerical
solution of Hottel. One can see that the solutions
based on the tensor representation of the radia-
tion vector are the most rigorous and exactly
coincide with the Hottel numerical solution.
Therefore the results obtained by formula (18)
which corresponds to the solution by means of

2A
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FiG. 2. Effect of the optical depth 4 = k38 on the

dimensionless radiative flux ge2s/(Eyqy — Eg.0) be-

tween the boundary surface (S) and the medium (G)

at A, = A, = 1.

Curve 1—the Hottel numerical solution.

Curve 2—the Schuster-Schwarzschild method.

Curve 3—the method which uses gradient representa-
tions of the radiation vector.

4-O—points obtained by the present method;

#ine 1 and #in. 5 are found by formulae (21)
and (22) of the second approximation;
they merge with curve 1 on the plot.

tensor expression (5) are plotted in Figs. 1 and 2
as separate points actually merging with Hottel’s
curve. The coefficients xinec1 and xinc 2 for the
points plotted are calculated by formulae (21)
and (22) of the second approximation. It was
already mentioned that the results obtained
from formula (18) and the coefficients e 1 and
#incs calculated by formula (20) of the first
approximation are almost the same as those
obtained by the formulae of the second approxi-
mation, and plotting these points is, therefore,
rather difficult.

The results obtained by the first two dif-
ferential methods {see (4) and (17)] merge with
the rigorous solution only at a certain portion,
and over the rest of the optical depth range
k& they differ to some degree. The solution by
the Schuster—Schwarzschild method (assuming
that m; = m_ = 2) merges with that obtained
by the Hottel numerical solution over the
range of small k8. Further, with increase in k§
the curves diverge and at great values of the
optical depth expression (4) obtained is 25 per
cent lower than the rigorous solution. This is
caused by the fact that the assumption of perfect
diffusivity (m+ = m_ = 2) with counter fluxes
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in any cross-section of the laver is satisfied
with the greatest accuracy at some values of k8.
The solution by means of gradient expressions
of the radiation vector merges with the Hottel
solution over the range of great 49, i.e. in that
very place where general tensor expression (5)
of the radiation vector may be substituted for
gradient formula (6). With decrease in k38 the
solution by gradient formula (6) lies slightly
above the rigorous solution and merges with it at
k8 == 0. However, the results obtained by all the
three differential methods do not differ so
markedly from the rigorous solution as claimed
by Hottel when he compared the numerical
solution with the inaccurate method by Konakov
[13]. The inaccuracy of Konakov’s method is
caused by the fact that he considered it possible
to neglect absorption and emission in the layers
with optical depth k8 < 2. However, as is
shown in the present work, if the boundary con-
ditions are formulated correctly, the differential
methods for calculation of radiant heat transfer
are satisfactory and may be adequately used for
investigation into the problem provided that
such incorrect assumptions as Konakov's con-
cept are not made.

CONCLUSIONS

The differential method advocated in this
paper for investigation of radiant heat transfer,
using tensor representation of radiant flux, is the
most accurate one, since it is based on rigorous
relations. Calculation carried out by this method
agrees well with the Hottel numerical solution
which is assumed to be rigorous over the whole

V. N. ADRIANOV and G. L. POLYAK

range of the optical depth 4£38. At small k3
the Schuster-Schwarzschild method gives good
results, and with large values of k8 the best
solution is obtained by gradient expressions of
the radiation vector.

The method of radiant heat-transfer study
using differential equations (2) and (8) and
boundary conditions (12-14) was proposed by
Polyak. The mathematical operations for this
method were applied to the problems considered
in the paper, and all the necessary calculations
and illustrations were made by V. N. Adrianov.
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Abstract—This paper describes novel differential methods for studying radiant heat transfer which

might have wide application on the score of simplicity. A new method is put forward, based on tensor

representation and yields more accurate results. Comparison between calculated results of radiant

heat transfer through a plane absorbing layer obtained with existing and with the proposed methods
and those obtained numerically on a computer reveal good agreement.

Résumé—Cet article décrit des méthodes différentielles nouvelles pour 'étude des échanges thermiques

par rayonnement dont la simplicité permet une large application. Une méthode nouvelle utilisant

la représentation tensorielle conduit & des tésultats plus précis. Les résultats relatifs aux échanges

thermiques par rayonnement dans le cas d’une couche plane absorbante, calculés par les méthodes

antérieures, par les méthodes proposées ici et celles qui utilisent des precédé numériques sont en bon
accord.

Zusammenfassung—In der Arbeit werden neuartige Differentialmethoden zur Untersuchung des
Wirmeiiberganges infolge Strahlung beschrieben, die wegen ihrer Einfachheit verbreitete Anwendung
finden konnten. Fine neue Methode wird erldutert; Sie basiert auf der Tensorrechnung und fithrt auf
genauere Ergebnisse. Der Vergleich der Rechenergebnisse fiir den Wirmetransport infolge Strahlung
durch eine ebene, absorbierende Schicht nach bereits bekannten und den neu vorgeschlagenen
Methoden mit numerisch auf einer Rechenmaschine erhaltenen zeigt gute Ubereinstimmung.



