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AHHOT~~WS-B pa6oTe PaCCMOTpeHbl~~~~epeH~aanbHbIe MeTOAbI HCCJIeflOBElHlifl JIyWCTOFO 

TeIIJIOO6MeHEt, ItOTOpJaIe 6naroaapH CBOeti CpaBHMTWIbHO& IIpOCTOTe OTKpbIBaIoT HOBbIe 
B03MOHIHOCTM. npeAJlO%!eH 6onee TOYHbIn ~H$NjEpeH~WIbHbIti MeTOg, OCHOBbIBaIOlQIStiCH Ha 

TeH3OpHOM IIpeACTaBZeHIvl JIyWICTOrO IIOTOKB. CpaBHeHIle pe3yJlbTEtTOB paC'ItiTaQ'WICTOl'0 

TeIInOO6MeHEt B IISIOCKOM CJIOe IIONIO~EIIO~efi CpeAbI,IIOJlyqeHHbIX Ha OCHOBe Cy~eCTBylOIQHX 
m npeanaraeworo MeToBoe, c mczembm pememetd aanasr4 Ha BbtmcmTenbHoti MaimHe 

noKaaan0 0qeHb xoporrree comaneme am peKoMeHAyemor0 MeToAa. 

NOMENCLATURE 

absorption coefficient of the medium; 
length of path of radiation; 
black-body emissivity; 
radiation intensity; 

black-body radiation intensity; 

densities of hemispherical incident fluxes at a plane normal 
to the x-axis; 

7) = lcos (ni)l = 00s 8, 

dw, 

m+ = 

m-.= 

T, 

(+2n) J+ dw s 
s (+2,,) J+ rl dw 1 
Sc-2n) J- &J 
L-2,, J- 77 &J 

TI and T2, E,., and E,., 

<I and Ed, A, and A,, 

6, 
9, 
c, 

1 

absolute value of the cosine of the angle between the 
direction of the beam (s) and the normal (n) surface 
section ; 
element of the solid angle in the direction S; 

coefficients allowing for distribution of J in hemispherical 
radiative fluxes E+ and E-; 

absolute temperature of the medium in the same section of 
the layer; 
temperatures and black-body emissivities of boundary 
surfaces, rsspectively; 
emissivity and absorptivity of the boundary surfaces, 
respectively ; 
thickness of the plane layer; 
radiative flux vector; 
velocity of propagation of radiation in the medium; 

volume density of radiation energy; 

symmetrical orthogonal emissive power tensor of the 
second range (P/c is tensor of radiation intensities); 
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A zc;, 
dimensionless tensor equal to the ratio of tensor P to its 
main invariant value cU --_ pn t ppZ + ps3; 

ilk = .L J cos (d.s) cm (xps) dw, components of tensor P; 
(i, k = 1, 2, 3) 

Pii =I S&j J cos2 (x$, dw, 
(i = 1, 2, 3) 

Xi = k.Xi, 

q1 and q2, 
4% 
R, = 1 - A, and R, 2= 1 
K&S); K,(ks) ; K,(kQ, 

- 

normal components of tensor P; 

dimensionless co-ordinate along the main axis of the 
tensor ; 
time ; 
hemispherical densities of effective and incident radiant 
fluxes, respectively ; 

coefficients allowing for the angufar intensity distribution 
J in the effective and incident fluxes on the boundary 
surface ; 

angle between the beam direction and the normal to the 
boundary surface; 
net radiative fluxes on the boundary surfaces; 
reduced strength of volume heat sources; 
reflection factors of the boundary surfaces; 
the second, third and fourth exponential integrals of k8 
obtained from formula 

RADIANT heat transfer processes under steady 
conditions are described mathematically 
rigorously by Fredholm integral equations of 
the second kind. Their analytical solution is 
difficult especially for systems with volume 
absorption. 

The quest for effective methods of radiant 
heat transfer prediction has led to the treatment 
based on the differential equation of radiant 
transfer. This equation, with no scattering in 
the medium, is of the form: 

1 df _. - = 
k dl 

-J-l- Jo. fl) 

Integrating the transfer equation in all possible 
directions over 477 radians, the radiant energy 
balance equation at the point of interest may be 
obtained, 

au 
%;+divq=4kEo--kcW=q+ (2) 

Stationary problems of radiant transfer only 
are considered in this paper, problems where 
the term ali/& in equation (2) is zero. This 
equation is, therefore, simplified to: 

div q = 4kE, ~ kcU = qz.. G?a) 

Combination of equations (1) and (2a) yields 
an integro-differential equation based on the 
intensity of radiation J. This equation may be 
solved mathematically using certain assumptions. 

Pioneers of the di~erential methods for radiant 
heat transfer prediction were, probably, Schuster 
[l] and Schwarzschild [Z]. In 1905-1906 they 
developed a method which allowed them to study 
radiative transfer in plane layers of the atmo- 
sphere. Their method was used, with some modi- 
fications, for geophysical problems by Kuznetsov 
[3]. Bruhat [4], Nevsky [5], Ribaud [6] and 
others applied this technique to thermal 
problems. 

The Schuster-Schwarzschild method is based 



DIFFERENTIAL METHODS FOR STUDYING RADIANT HEAT TRANSFER 357 

on the conception of the net radiative flux in a 
plane layer of the medium as the difference 
between two counter fluxes. This conception 
allows the integro-differential equation of 
radiant heat transfer to be approximated by a 
system of two averaged differential equations for 
radiative fluxes E+ and E-. With no scattering 
in the medium these equations have the form: 

dE+ 1 
dx 

-=2kE,-km+E+ i 

dE- 
(3) 

dx 
= - 2kEo + km- E- 

J 
The coefficients m+ and m- are, generally 

speaking, functions of the co-ordinate x and 
other factors, Their behaviour is difficult to 
predict for every specific case. However, it can be 
shown by the analysis, m+ and m- are slightly 
dependent on the co-ordinate and they may be 
substituted in equation (3) for their average 
value m+ = m- = ~ii. After this substitution 
joint solution of equations (3) and energy 
equation (2a) (also in terms of fi) is not difficult 
in principle. If the fluxes E+ and E- are assumed 
to be perfectly diffusive in every cross section of 
the layer (which, in general, is close to reality), 
it is easy to see that m+ = m- = 1% = 2. For 
this case solution of intial equations (2a) and 
(3) yields the following expression for the net 
radiative flux in a plane layer of the medium 
bounded by grey walls: 

The Schuster-Schwarzschild method may be 
valid in principle for the radiant systems of 
spatial geometry. However, in this case the 
equations will be more complicated and estima- 
tion of m becomes rather difficult. 

In 1931 Rosseland [7] presented another dif- 
ferential method for the study of radiation in 
stellar atmospheres using integral transfer 
equation (1). In this study Rosseland arrived at a 
tensor representation of the radiative flux vector: 

q = - i div P. 

Rosseland resolved the radiation tensor P 
into two parts (the first part is related to the 

density of radiation energy at a given point, the 
second gives the intensity distribution over 
all the directions) and analysed them. His 
result was that for stellar atmospheres of high 
optical density the second part of the tensor 
may be neglected as compared with the first one. 
This allowed him to obtain the gradient ex- 
pression for the radiative flux vector: 

C 
q = - 3k grad U. 

Gradient representations of the radiation 
vector have been utilized for thermal experi- 
ments by Polyak [8] and Shorin [9], who applied 
this technique to some problems of radiative 
transport under various conditions, for systems 
of different geometry. 

In 1957 Polyak [lo] analysed in detail tensor 
expression (5) and obtained the following 
expression for the radiant flux vector by intro- 
ducing a dimensionless normalized tensor: 

q_-“” li grad U - ‘$! div A. (7) 

Gradient formula (6) may be evidently ob- 
tained from equation (7), if the dimensionless 
tensor A, characterizing the shape of a tensor 
ellipsoid of the radiation field, is always constant 
and remains similar to itself. This condition is 
fulfilled more precisely when the optical density 
of the medium increases and when the system 
approaches thermodynamic equilibrium as close 
as possible. Thus both differential methods (the 
Schuster-Schwarzschild method and the dif- 
fusive one) use approximate differential 
equations. In view of this, the accuracy of the 
results obtained by these methods are often open 
to question. Hottel [ll, 121, for instance, criti- 
cized the radiative diffusion method. In his 
work Hottel compared the results of solution of 
the radiant heat transfer problem in a plane 
layer of an absorbing medium based on the 
integral equation7 with the solution to the same 
problem carried out with the radiative diffusion 

* Formula (6) is often interpreted in literature as the 
diffusion approximation of radiant transfer of the 
similarity with the diffusion equation. 

t The integral equation was solved numerically with a 
computer. 
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process method. The comparison revealed 
considerable disagreement between the results. 
The difference between them is due to the fact 
that Hottel used for comparison the results 
obtained by the Konakov approximate method 
1131. If the boundary conditions of the problem 
are formulated more precisely, the difference 
between the results will be not so striking but 
may be rather small, as wiI1 be demonstrated 
below. 

Besides the two above differential methods 
tensor expression (5) may be adequately used for 
some cases of radiative transport in an absorbing 
medium. For steady conditions relation (5) is 
rigorous and there is no doubt as to the validity 
of its use. All the errors encountered are caused 
only (in contrast to the above methods) by 
inaccuracy in formulating the boundary con- 
ditions. 

The solution of a one-dimensional problem of 
radiant heat transfer is given below on the basis 
of tensor expression (5). and the results for a 
plane layer obtained by various differential 
methods are compared with the numerical 
solution of Hottel. 

From (5) the components of the radiation 
vector qzj along the main axes x1, x2, xQ of the 
tensor P are found from normal components 
of the tensor pii : 

1 +ii 2ppii 
qsi == - = -- = k ilx. 1 ax,, 1 

i 1, 2, 3. (8) 

Equation (8) is both a refinement of and 
generalization of the Schuster-Schwarzschild 
approximation (3) : 

1 d(E+ + E-) 
qx= -Ati TX = - - ‘. d(cu> (3a) 

kri? dx 

and of gradient approximation (6) 

1 a(d) 
qx = - jk 7gx . 

Based on equation (8) energy equation (2aI may 
be written as: 

= k(4E, - cU) = qc. (9) 

With no heat sources in the medium or with 
local radiant equilibrium (qv = 0) equation (9) 
is simplified to: 

--$J; !j?) -0. (10) 

i= 1 

For a problem of radiant heat transfer in a 
plane layer the main axis of tensor xi E s 
merges with the direction of the radiative flux 
vector and is normal to the boundary surfaces. 
Equation (10) for this case acquires a simple 
form : 

where 

p = pm = Jcdn) J cos2 (x:i) dw. 

Boundary conditions may be formulated 
based on the following considerations. 

The net radiative flux qn normal to the boun- 
dary surface may be expressed by two equations : 

q?b = AEin, -_ EEO = Einc - I!&. (12) 

For the one-dimensional problem considered 
the main tensor axis is normal to the boundary 
surface. Hence, the value of the normal tensor 
at the boundary pF = pn may be expressed by 

Pn = s, 2n, Jv2 dw + I+;,, J? do 

E Xeff Eeff -t Xinc Einc. (13) 

The following expression of the boundary 
conditions is based on equations (12) and ( 13) : 

1-R %ff + Xinc 
<ED. 

qn = I?&+ kincpn _- Rxeff + Xinc 
(14) 

Solution of energy equation (11) with boun- 
dary conditions (14) yields the following formula 
for the net radiative flux when the temperature 
of the boundary surfaces is known: 

(Q/Al) Eo.1 (%ff 1 + Xinr 1) 

-- (~2/A2) E0.2 (xerf 2 L zinc 2) 
” = ~- ” = kS + (l/A~~(x,lf~R,$~m~incl) . 

+ (I /At) (xeft 2 R2 + zinc 2) 

(15) 
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To use formula (15) one should know the 
values of coefficients xerr and zinc on both sur- 
faces. Being obtained from rigorous relation (5), 
equation (15) is precise, and the results depend 
only on the accuracy of the coefficients xerr and 
XinC given at the boundary. If fluxes f&r and 
Einc on the boundary surfaces are assumed to be 
perfectly diffusive (J = const.), these coefficients 
are 

J-I-J 17’ dw 
Xeff = Xinc = ltznj J77 dw 

2~ S,rr” cos2 0 sin 0 d9 2 
= 2fiZ-ccsmz = 3’ (16) 

In this case formula (15) for a plane layer 
(at E, = A, and Ed = A,, i.e. with grey walls) 
becomes a convenient solution of this problem 
based on gradient formula (6): 

Eo., - Eo.2 _____ 
’ = (I/?&)~~A~- 1 + (3/4) k8 . (17) 

One can see that equation (17) differs from 
formula (4) obtained by means of the Schuster- 
Schwarzschild method only by the multiplier 3/4 
with k~? in the dominator. If the boundary sur- 
faces are assumed to be diffusively reflecting, 
then xerr 1 = Xcrr 2 = (2/3) and only the coeffi- 
cients zinc 1 and zinc 2 in equation (15) are to be 
determined. For the analysis of their values 
the extreme case of non-equilibrium radiant heat 
transfer in a plane layer 

(T,=O, El= Eg=A1=A2= 1) 

is considered below. In this case the coefficient 
zinc 1 and zinc 2 should differ by the maximum 
value and depend most strongly on the optical 
depth of the layer A = k6. 

Formula (15) for this condition 

(r, = 0, A, = A, = 1) 

reduced to a dimensionless form is simplified to : 

To determine zinc 1 and zinc 2 the temperature 
field in the layer should be known. Uniform 
temperature distribution over the thickness of 
the layer was adopted as the first approximation, 
the temperature being determined from con- 

sideration of the problem as a system composed 
of three zones (two walls and a layer of the 
medium). 

In this case the temperature of the layer is 

T$ = “-lz = :!, since (TZ = 0) (19) 

and the expressions for zinc 1 and zinc 2 are the 
following: 

1 I 

2 1 - 3&(A) 

Xinc Tv=O 
= 5 mx@j; 

2 1 + 3&(A) 
Xinc 2 = Tz=o 3 1 - 2K,(A)’ 

The temperature field was found 

(20) 

as the 
second approximation based on gradient for- 
mula (6) with corresponding boundary condi- 
tions on the walls. In this case the distribution of 
the fourth power of T, over the layer thickness 
is linear. Expressions for Xinc 1 and zinc 2 become 
more complicated : 

2 
%nc 1 

I 
= 

T,=O 3 

(312) A - (l/8) + {(9/8) t--4&(A)l - 3&(A)) 
(3/2) A + [3&(A) + 2W)l 

(21) 

I 2 
Wnc 2 = 

Tz=O 3 

(17/8) - {(9/S) [--4&(A)] - 3&(A):- _-__ 
2 - [3&(A) + 2K2(A)ip * (22) 

Thus we can analyse the three solutions of the 
radiant heat-transfer problem in a plane layer 
of an absorbing medium which are carried out 
by various differential methods. Formula (4) 
corresponds to the solution by the Schuster- 
Schwarzschild method when assuming that 
m+ = m- = E = 2 and formula (17) cor- 
responds to the solution by means of gradient 
expression (6) for radiation vector. Equation (18) 
is a solution for the particular case (T, = 0; 
A, = A, = 1) using tensor relation (5); the 
values of zinc1 and zinc 2 can be obtained by 
formulae (20), (21) and (22) for the first and the 
second approximation. 

In Table 1 the results are compiled of 
dimensionless fluxes between the boundary 
surfaces of the layer [q’rad/(Eo.1 - E,.,)] and 
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between the boundary surface and the layer 0.4 

[qG=s]/(EO.I - E,.,), obtained by formulae (4), 
(17) and (18). Here expressions for Xinc 1 and 
XinC 2 were taken for the first and the second 

0.3 

approximation. However, one can see from x 
Y 

Table 1 that the results of both the approxima- s 0.2 

tions are in good agreement. In Table 1 for com- * 

parison, the values of the same fluxes are shown, 
as obtained by the Hottel numerical solution 3 0.1 

using Fig. 2 of his work [12]. Figs. 1 and 2 are 
0 

I.0 0.1 0.2 0.4 0.6 p0 

A=h3 
0.9 

FIG. 2. Effect of the optical depth A = kS on the 
dimensionless radiative flux qGz&EO.I - E,.z) be- 
tween the boundary surface (S) and the medium (G) 
atA,=A,= 1. 
Curve l-the Hottel numerical solution. 

* 0.6 
G 
I 
; 0.5 

k 

2 0.4 

Curve 2-the Schuster-Schwarzschild method. 
Curve 3-the method which uses gradient representa- 

tions of the radiation vector. 
4-O-points obtained by the present method; 

XI,,~ 1 and XI*: a are found by formulae (21) 
and (22) of the second approximation; 
they merge with curve 1 on the plot. 

0.2 
tensor expression (5) are plotted in Figs. 1 and 2 
as separate points actually merging with Hottel’s 

0.1 curve. The coefficients Xinc 1 and zinc 2 for the 
points plotted are calculated by formulae (21) 

0 and (22) of the second approximation. It was 
A=K6 already mentioned that the results obtained 

FIG. 1. Effect of the optical depth d = k8 on dimen- from formula (18) and the coefficients xinc 1 and 
sionless flux qra&& - E0.2) through the plane zinc 2 calculated by formula (201 of the first 
medium between the walls at A, = A, = 1. 
Curve l-the rigorous Hottel solution. 

approximation are almost the same as those 

Curve 2-the Schuster-Schwarzschild method, (4). 
obtained by the formulae of the second approxi- 

Curve 3-the method which uses gradient representa- mation, and plotting these points is, therefore, 
tion of the radiation vector, (17). rather difficult. 

4-O-points obtained by the present method, 
formula (18); xi ncl and zinc 2 are found 

The results obtained by the first two dif- 

by formulae (21) and (22) of the second 
ferential methods [see (4) and (17)] merge with 

approximation. They merge with curve I the rigorous solution only at a certain portion, 
on the plot. and over the rest of the optical depth range 

k6 they differ to some degree. The solution by 
plotted on the basis of the data of Table 1. Here the Schuster-Schwarzschild method (assuming 
solutions obtained by all the three differential that m+ = m- = 2) merges with that obtained 
methods are compared with the numerical by the Hottel numerical solution over the 
solution of Hottel. One can see that the solutions range of small k6. Further, with increase in k8 
based on the tensor representation of the radia- the curves diverge and at great values of the 
tion vector are the most rigorous and exactly 
coincide with the Hottel numerical solution. 

optical depth expression (4) obtained is 25 per 
cent lower than the rigorous solution. This is 

Therefore the results obtained by formula (18) 
which corresponds to the solution by means of 

caused by the fact that the assumption of perfect 
diffusivity (m+ = w- = 2) with counter fluxes 
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in any cross-section of the layer is satisfied 
with the greatest accuracy at some values of kS. 
The solution by means of gradient expressions 
of the radiation vector merges with the Hottel 
solution over the range of great kS, i.e. in that 
very place where general tensor expression (5) 
of the radiation vector may be substituted for 
gradient formula (6). With decrease in kS the 
solution by gradient formula (6) lies slightly 
above the rigorous solution and merges with it at 
kS = 0. However, the results obtained by all the 
three differential methods do not differ so 
markedly from the rigorous solution as claimed 
by Hottel when he compared the numerical 
solution with the inaccurate method by Konakov 
[I 31. The inaccuracy of Konakov’s method is 
caused by the fact that he considered it possible 
to neglect absorption and emission in the layers 
with optical depth kS < 2. However, as is 
shown in the present work, if the boundary con- 
ditions are formulated correctly, the differential 
methods for calculation of radiant heat transfer 
are satisfactory and may be adequately used for 
investigation into the problem provided that 
such incorrect assumptions as Konakov’s con- 
cept are not made. 

CONCLUSIONS 

The differential method advocated in this 
paper for investigation of radiant heat transfer, 
using tensor representation of radiant flux, is the 
most accurate one, since it is based on rigorous 
relations. Calculation carried out by this method 
agrees well with the Hottel numerical solution 
which is assumed to be rigorous over the whole 

range of the optical depth k6. At smail k8 
the Schuster-Schwarzschild method gives good 
results, and with large values of k6 the best 
solution is obtained by gradient expressions of 
the radiation vector. 

The method of radiant heat-transfer study 
using differential equations (2) and (8) and 
boundary conditions ( 12-14) was proposed by 
Polyak. The mathematical operations for this 
method were applied to the problems considered 
in the paper, and all the necessary calculations 
and iilustrations were made by V. N. Adrianov. 
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Abstract-This paper describes novel differential methods for studying radiant heat transfer which 
might have wide application on the score of simplicity. A new method is put forward, based on tensor 
representation and yields more accurate results. Comparison between calculated results of radiant 
heat transfer through a plane absorbing layer obtained with existing and with the proposed method5 

and those obtained numerically on a computer reveal good agreement. 

R6sumC-Cet article dtcrit des mCthodes diff&entielIes nouvelles pour I.&de des echanges thermiques 
par rayonnement dont la simplicitk permet une large application. Une mdthode nouvelfe utilisant 
la repr&entation tensorielle conduit & des rCsuItats plus precis. Les r&dtats relatifs aux &changes 
thermiques par rayonnement dans le cas d‘une couche plane absorbante, calculCs par les methodes 
antbieures, par les m&hodes proposees ici et celles qui utilisent des pro&de numtriques sent en bon 

accord. 

Zusammenfassung-In der Arbeit werden neuartige Differentialmethoden zur Untersuchung des 
W&rmei_iberganges infolge Strahlung beschrieben, die wegen ihrer Einfachheit verbreitete Anwendung 
finden kiinnten. Eine neue Methode wird erlgutert ; Sie basiert auf der Tensorrechnung und fiihrt auf 
genauere Ergebnisse. Der Vergleich der Rechenergebnisse ftir den W~rmetranspo~ infolge Strahlung 
durch eine ebene, absorbierende Schicht nach bereits bekannten und den neu vorgeschlagenen 

Methoden mit numerisch auf einer Rechenmaschine erhaltenen zeigt gute Ubereinstimmung. 


